AD

光纖通信基礎知識

[2019-09-30 00:00:25] 來源:電工學習網 編輯:電工考試 點擊量:
評論 點擊收藏
導讀:光纖通信的優點  ●通信容量大  ●中繼距離長  ●不受電磁干擾  ●資源豐富  ●光纖重量輕、體積小  光通信發展簡史  2000多年前  烽火臺——燈光、旗語  1880年  光電話——無線光通信   ...

  光纖通信的優點
  ●通信容量大
  ●中繼距離長
  ●不受電磁干擾
  ●資源豐富
  ●光纖重量輕、體積小
  光通信發展簡史
  2000多年前
  烽火臺——燈光、旗語
  1880年
  光電話——無線光通信
  1970年
  光纖通信
  ●1966年“光纖之父”高錕博士首次提出光纖通信的想法。
  ●1970年貝爾研究所林嚴雄在室溫下可連續工作的半導體激光器。
  ●1970年康寧公司的卡普隆(Kapron) 之作出損耗為20dB/km光纖。
  ●1977年芝加哥第一條45Mb/s的商用線路。


  電磁波譜
  通信波段劃分及相應傳輸媒介


  光的折射/反射和全反射
  因光在不同物質中的傳播速度是不同的,所以光從一種物質射向另一種物質時,在兩種物質的交界面處會產生折射和反射。而且,折射光的角度會隨入射光的角度變化而變化。當入射光的角度達到或超過某一角度時,折射光會消失,入射光全部被反射回來,這就是光的全反射。不同的物質對相同波長光的折射角度是不同的(即不同的物質有不同的光折射率),相同的物質對不同波長光的折射角度也是不同。光纖通訊就是基于以上原理而形成的。
  反射率分布:表征光學材料的一個重要參數是折射率,用N表示,真空中的光速C與材料中光速V之比就是材料的折射率。
  N=C/V
  光纖通信用的石英玻璃的折射率約為1.5
  光通信的發展過程


  光的基本知識


  光纖結構
  光纖裸纖一般分為三層:
  第一層:中心高折射率玻璃芯(芯徑一般為9-10μm,(單模)50或62.5(多模)。
  第二層:中間為低折射率硅玻璃包層(直徑一般為125μm)。
  第三層:最外是加強用的樹脂涂層。


  1)纖芯  core:折射率較高,用來傳送光;
  2)包層  coating:折射率較低,與纖芯一起形成全反射條件;
  3)保護套  jacket:強度大,能承受較大沖擊,保護光纖。
  3mm光纜   橘色       MM      多模
  黃色       SM       單模
  光纖的尺寸
  外徑一般為125um(一根頭發平均100um)
  內徑:單模9um  多模50/62.5um
  數值孔徑
  入射到光纖端面的光并不能全部被光纖所傳輸,只是在某個角度范圍內的入射光才可以。這個角度就稱為光纖的數值孔徑。光纖的數值孔徑大些對于光纖的對接是有利的。不同廠家生產的光纖的數值孔徑不同
  光纖的種類
  按光在光纖中的傳輸模式可分為:
  多模(Multi-Mode) (簡稱:MM)
  單模(Single-Mode)(簡稱:SM)
  多模光纖:中心玻璃芯較粗(50或62.5μm),可傳多種模式的光。但其模間色散較大,這就限制了傳輸數字信號的頻率,而且隨距離的增加會更加嚴重。例如:600MB/KM的光纖在2KM時則只有300MB的帶寬了。因此,多模光纖傳輸的距離就比較近,一般只有幾公里。
  單模光纖:中心玻璃芯較細(芯徑一般為9或10μm),只能傳一種模式的光。實際上是階躍型光纖的種,只是纖芯徑很小,理論上只允許單一傳播途徑的直進光入射至光纖內,并在纖芯內作直線傳播。光纖脈沖幾乎沒有展寬。因此,其模間色散很小,適用于遠程通訊,但其色度色散起主要作用,這樣單模光纖對光源的譜寬和穩定性有較高的要求,即譜寬要窄,穩定性要好。
  光纖的分類
  按材料分類:
  玻璃光纖:纖芯與包層都是玻璃,損耗小,傳輸距離長,成本高;
  膠套硅光纖:纖芯是玻璃,包層為塑料,特性同玻璃光纖差不多,成本較低;
  塑料光纖:纖芯與包層都是塑料,損耗大,傳輸距離很短,價格很低。多用于家電、音響,以及短距的圖像傳輸。
  按最佳傳輸頻率窗口:常規型單模光纖和色散位移型單模光纖。
  常規型:光纖生產長家將光纖傳輸頻率最佳化在單一波長的光上,如1300nm。
  色散位移型:光纖生產長家將光纖傳輸頻率最佳化在兩個波長的光上,如:1300nm和1550nm。
  突變型:光纖中心芯到玻璃包層的折射率是突變的。其成本低,模間色散高。適用于短途低速通訊,如:工控。但單模光纖由于模間色散很小,所以單模光纖都采用突變型。
  漸變型光纖:光纖中心芯到玻璃包層的折射率是逐漸變小,可使高模光按正弦形式傳播,這能減少模間色散,提高光纖帶寬,增加傳輸距離,但成本較高,現在的多模光纖多為漸變型光纖。
  常用光纖規格
  光纖尺寸:
  1)單模纖芯直徑:9/125μm,10/125μm
  2)包層外徑(2D)=125μm
  3)一次涂敷外徑=250μm
  4)尾纖:300μm
  5)多模:
  50/125μm,歐洲標準
  62.5/125μm,美國標準
  6)工業,醫療和低速網絡:100/140μm, 200/230μm
  7)塑料:98/1000μm,用于汽車控制
  光纖衰減
  造成光纖衰減的主要因素有:本征,彎曲,擠壓,雜質,不均勻和對接等。
  本征:是光纖的固有損耗,包括:瑞利散射,固有吸收等。
  彎曲:光纖彎曲時部分光纖內的光會因散射而損失掉,造成的損耗。
  擠壓:光纖受到擠壓時產生微小的彎曲而造成的損耗。
  雜質:光纖內雜質吸收和散射在光纖中傳播的光,造成的損失。
  不均勻:光纖材料的折射率不均勻造成的損耗。
  對接:光纖對接時產生的損耗,如:不同軸(單模光纖同軸度要求小于0.8μm),端面與軸心不垂直,端面不平,對接心徑不匹配和熔接質量差等。
  光纜的種類
  1)按敷設方式分有:自承重架空光纜,管道光纜,鎧裝地埋光纜和海底光纜。
  2)按光纜結構分有:束管式光纜,層絞式光纜,緊抱式光纜,帶式光纜,非金屬光纜和可分支光纜。
  3)按用途分有:長途通訊用光纜、短途室外光纜、混合光纜和建筑物內用光纜。
  光纜的接續與成端
  光纜的接續與成端是光纜線路維護人員必須掌握的基本技能。
  光纜的接續技術分類:
  1)光纖的接續技術和光纜的接續技術兩部分。
  2)光纜的成端類似光纜的接續,只不過由于接頭材料不同而操作該當也有所不同。
  光纖接續的種類
  光纜接續一般可分為兩大類:
  1)光纖的固定接續(俗稱死接頭)。一般采用光纖熔接機;用于光纜直接頭。
  2)光纖的活動接頭(俗稱活接頭)。用能夠拆卸的連接器連接(俗稱活接頭)。用于光纖跳線、設備連接等地方
  由于光纖端面的不完整性和光纖端面壓力的不均勻性,一次放電熔接光纖的接頭損耗還比較大,現在采用二次放電熔接法。先對光纖端面預熱放電,給端面整形,去除灰塵和雜物,同時通過預熱使光纖端面壓力均勻。
  光纖連接損耗的監測方法
  光纖連接損耗的監測方法有三種:
  1、在熔接機上進行監測。
  2、光源、光功率計監測。
  3、OTDR測量法
  光纖接續的操作方法
  光纖接續操作一般分為:
  1、光纖端面的處理。
  2、光纖的接續安裝。
  3、光纖的熔接。
  4、光纖接頭的保護。
  5、余纖的盤留五個步驟。
  通常整個光纜的接續按以下步驟進行:
  第一步:大量好長度,開剝光纜,除去光纜護套;
  第二步:清洗、去除光纜內的石油填充膏。
  第三步:捆扎好光纖。
  第四步:檢查光纖心數,進行光纖對號,核對光纖色標是否有誤;
  第五步:加強心接續;
  第六步:各種輔助線對,包括公務線對、控制線對、屏蔽地線等接續(如果有上述線對。
  第七步:光纖的接續。
  第八步:光纖接頭保護處理;
  第九步:光纖余纖的盤庫留處理;
  第十步:完成光纜護套的接續;
  第十一步:光纜接頭的保護。
  光纖的損耗
  1310 nm : 0.35 ~ 0.5 dB/Km
  1550 nm : 0.2 ~ 0.3dB/Km
  850 nm :  2.3 ~ 3.4 dB/Km
  光纖熔接點損耗:0.08dB/點
  光纖熔接點 1點/2km
  常見光纖名詞


  1)衰減
  衰減:光在光纖中傳輸時的能量損耗單模光纖1310nm  0.4~0.6dB/km1550nm  0.2~0.3dB/km塑料多模光纖300dB/km
  2)色散
  色散(Dispersion):光脈沖沿著光纖行進一段距離后造成的頻寬變粗。它是限制傳輸速率的主要因素。
  模間色散:只發生在多模光纖,因為不同模式的光沿著不同的路徑傳輸。
  材料色散:不同波長的光行進速度不同。
  波導色散:發生原因是光能量在纖芯及包層中傳輸時,會以稍有不同的速度行進。在單模光纖中,通過改變光纖內部結構來改變光纖的色散非常重要。
  光纖類型
  G.652零色散點在1300nm左右
  G.653零色散點在1550nm左右
  G.654負色散光纖
  G.655色散位移光纖
  全波光纖
  3)散射
  由于光線的基本結構不完美,引起的光能量損失,此時光的傳輸不再具有很好的方向性。


  光纖系統基礎知識
  基本光纖系統的構架及其功能介紹:
  1.發送單元:把電信號轉換成光信號;
  2.傳輸單元:載送光信號的介質;
  3.接收單元:接收光信號并轉換成電信號;
  4.連接器件:連接光纖到光源、光檢測以及其它光纖。


  常用連接器類型


  連接頭端面類型
  耦合器(coupler)
  主要功能再分配光信號
  重要應用在光纖網絡
  尤其是應用在局域網
  在波分復用器件上應用
  基本結構
  耦合器是雙向無源器件
  基本形式有樹型、星型
  ——與耦合器對應的有分路器(splitter)
  以圖形表示


  波分復用器
  WDM—Wavelength Division Multiplexer在一條光纖中傳輸多個光信號,這些光信號頻率不同,顏色不同。波分復用器就是要把多個光信號耦合進同一根光纖中;解波分復用器就是從一根光纖中把多個光信號區分出來。
  波分復用器(圖例)


  發送單元


  接收單元


  放大器
  光纖數字通信


  數字系統中脈沖的定義:
  1.振幅:脈沖的高度在光纖系統中表示光功率能量。
  2.上升時間:脈沖從最大振幅的10%上升到90%所需要的時間。
  3.下降時間:脈沖從振幅的90%下降到10%所需要的時間。
  4.脈沖寬度:脈沖在50%振幅位置的寬度,用時間表示。
  5.周期:脈沖特定的時間,就是完成一個循環所需要的工作時間。
  6.消光比:1信號光功率于0信號光功率的比值。
  光纖通信中常用單位的定義:
  1. dB = 10 log10 ( Pout / Pin )
  Pout :輸出功率 ; Pin :輸入功率
  2. dBm = 10 log10 ( P / 1mw)
  是通信工程中廣泛使用的單位;
  通常表示以1毫瓦為參考的光功率;
  example: –10dBm表示光功率等于100uw。
  3.  dBu = 10 log10 ( P / 1uw)

為您推薦

对错不改料的六肖有没有